Dependence modeling of multivariate longitudinal hybrid insurance data with dropout

نویسندگان

چکیده

Financial services industries, such as insurance, increasingly use data from their broad cross-section of customers and follow these over time. In other areas medicine, engineering, communication systems, it is well known that following subjects time may result in biased data, for example, the so-called ”dropout effect”. This paper introduces techniques to address dropout commonly encountered insurance domain. Specifically, context, multivariate claims outcomes be related a customer’s or decision lapse policy. Insurance are also naturally hybrid with both discrete continuous components, which adds complexity model calibration. Decision makers industry will find our work provides helpful guidance integrating customer loyalty, especially bundled coverages. generalized method moments technique estimate dependence parameters where associations represented using copulas. useful large sets. The describes how joint new information insurers can better manage portfolios risks. An application Spanish insurer set presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-effect hybrid models for longitudinal data with nonignorable dropout.

SUMMARY Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process a...

متن کامل

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data

BACKGROUND Joint modeling of longitudinal and survival data has been increasingly considered in clinical trials, notably in cancer and AIDS. In critically ill patients admitted to an intensive care unit (ICU), such models also appear to be of interest in the investigation of the effect of treatment on severity scores due to the likely association between the longitudinal score and the dropout p...

متن کامل

مدل بندی مقادیر کرانی خسارت های بیمه درمان (مطالعه موردی شرکت بیمه ایران) modeling health insurance claims with extreme observations (the case study of iran insurance company

در مدل بندی خسارت های بیمه درمان، مخصوصاً زمانی که شامل خسارت های با مقادیر بالا باشد، توزیع هایی که به صورت مرسوم مورد استفاده قرار می گیرد پیش بینی های خوبی بر روی خسارت های پایین انجام می دهد درموردخسارت های بالا کاربرد خوبی ندارد. یکی شیوه جهت رفع این مشکل این است که فقط بررسی را روی خسارت های بالا انجام دهیم و آن ها را توسط تابع توزیع پارتو تعمیم یافته مدل بندی کنیم. که این نظریه توسط تئور...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2021

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2021.115552